m at h . Q A ] 1 1 A ug 2 00 3 INVARIANT * - PRODUCTS ON COADJOINT ORBITS AND THE SHAPOVALOV PAIRING

نویسندگان

  • A. ALEKSEEV
  • A. LACHOWSKA
چکیده

We give an explicit formula for invariant *-products on a wide class of coadjoint orbits. The answer is expressed in terms of the Shapovalov pairing for generalized Verma modules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 60 20 16 v 1 7 F eb 2 00 6 Magnetic Geodesic Flows on Coadjoint Orbits ∗

We describe a class of completely integrable G-invariant magnetic geodesic flows on (co)adjoint orbits of a compact connected Lie group G with magnetic field given by the Kirillov-Konstant 2-form.

متن کامل

ar X iv : m at h - ph / 0 60 20 16 v 2 3 A pr 2 00 6 Magnetic Geodesic Flows on Coadjoint Orbits ∗ † ‡

We describe a class of completely integrable G-invariant magnetic geodesic flows on (co)adjoint orbits of a compact connected Lie group G with magnetic field given by the Kirillov-Konstant 2-form.

متن کامل

2 00 3 Cohomological Splitting of Coadjoint Orbits

The rational cohomology of a coadjoint orbit O is expressed as tensor product of the cohomology of other coadjoint orbits O k , with dim O k < dim O. 1 C-splitting of coadjoint orbits The purpose of this note is to express the rational cohomology of a given coadjoint orbit of a compact Lie group in terms of the cohomology of " smaller " coadjoint orbits. Our result is based upon two facts: The ...

متن کامل

ar X iv : q - a lg / 9 70 70 31 v 1 2 4 Ju l 1 99 7 DOUBLE QUANTIZATION ON THE COADJOINT REPRESENTATION OF

For g = sl(n) we construct a two parametric U h (g)-invariant family of algebras, (Sg) t,h , that is a quantization of the function algebra Sg on the coadjoint representation. Along the parameter t the family gives a quantiza-tion of the Lie bracket. This family induces a two parametric U h (g)-invariant quantization on the maximal orbits, which includes a quantization of the Kirillov-Kostant-S...

متن کامل

ar X iv : m at h / 02 08 03 3 v 1 [ m at h . Q A ] 5 A ug 2 00 2 CLUSTER ALGEBRAS AND POISSON GEOMETRY

We introduce a Poisson variety compatible with a cluster algebra structure and a compatible toric action on this variety. We study Poisson and topological properties of the union of generic orbits of this toric action. In particular, we compute the number of connected components of the union of generic toric orbits for cluster algebras over real numbers. As a corollary we compute the number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003